
An Effectful Way to Eliminate Addiction to
Dependence

Pierre-Marie Pédrot
University of Ljubljana

pierre-marie.pedrot@fmf.uni-lj.si

Nicolas Tabareau
INRIA

nicolas.tabareau@inria.fr

Abstract—We define a monadic translation of type theory,
called weaning translation, that allows for a large range of effects
in dependent type theory—such as exceptions, non-termination,
non-determinism or writing operation. Through the light of a
call-by-push-value decomposition, we explain why the traditional
approach fails with type dependency and justify our approach.
Crucially, the construction requires that the universe of algebras
of the monad forms itself an algebra. The weaning translation
applies to a version of the Calculus of Inductive Constructions
(CIC) with a restricted version of dependent elimination. Finally,
we show how to recover a translation of full CIC by mixing
parametricity techniques with the weaning translation. This
provides the first effectful version of CIC.

I. INTRODUCTION

The gap between type theories such as CIC and mainstream
programming languages comes to a large extend from the
absence of effects in type theories, because of its complex
interaction with dependency. For instance, it has already been
noticed that inductive types and dependent elimination do not
scale well to CPS translations and classical logic [1], [2]. Fur-
thermore, the traditional way to integrate effects in functional
programming using monads does not scale to dependency
because the monad leaks in the type during substitution.

In this paper, we propose Baclofen Type Theory (BTT), a
stripped-down version of CIC, and we provide generic notion
of syntactic models1 of it that allows for a large range of
effects in dependent type theory—exceptions, non-termination,
non-determinism or writing operation. BTT has a restricted
version of dependent elimination to overcome the difficulty to
marry effect and dependency. The syntactic models are given
by the weaning translation of BTT into CIC, using a variant
of the traditional monadic translation. The need for this variant
can be explained by analyzing the call-by-push-value (CBPV)
decomposition of call-by-value and call-by-name reduction
strategies. Crucially, our construction requires that the universe
of algebras of the monad forms itself an algebra. A monad
satisfying this property is said to be self-algebraic. We then
show how very common monads satisfy this property and thus
give rise to effects that can be integrated to BTT.

Finally, by mixing parametricity techniques with the wean-
ing translation, we show how to recover a translation of full
CIC, giving rise to the first effectful version of CIC.

1By syntactic models, we mean a model directly expressed in a type theory
through a program transformation, as advocated in [3].

Plan of the paper.

In Section II, we explain the main points of the construction
through the CBPV decomposition. Then, Section III and IV
describe the weaning translation for self-algebraic proto-
monads on BTT. Section V describes various instances of self-
algebraic proto-monads and their asociated effects. Section VI
presents a linearity condition to ease the use of BTT on
non-recursive inductive types and finally Section VII explains
how a mild modification of the weaning translation using
parametricity techniques allows one to recover a translation
of full CIC.

Plugin implementation.

As it is the case for other syntactic models [4], [3], it is
possible to implement the weaning translation as a Coq plugin.
The plugin is available at https://github.com/CoqHott/
coq-effects.

II. GENESIS OF THE CONSTRUCTION

This section presents a global overview of the weaning
translation given in this paper. It is based on two key ingre-
dients that allow us to define a monadic translation of CIC
for a large range of effects: i) the use of the call-by-name
decomposition in Levy’s call-by-push-value [5] (CBPV) and
ii) its instantiation with Eilenberg-Moore algebras for self-
algebraic monads.

A. The two canonical decompositions of a monad.

The use of monads to interpret effects in functional pro-
gramming languages comes back from the seminal work of
Moggi [6]. In its traditional view, the monadic interpretation
amounts to consider functions from A to B as functions of
type A→ T B where T is a computational monad. From a cat-
egorical point of view, this interpretation consists in working
in the Kleisli category CT induced by a monad T on C, where
the objects are those of C and the morphisms of CT(A,B) are
given by C(A, TB). Actually, the Kleisli category is one of
the two canonical notions of category of computations that is
part of a left and right adjoints decomposition of the monad,

C

FT

<<
> CT

UT

}}

https://github.com/CoqHott/coq-effects
https://github.com/CoqHott/coq-effects

where FT is the identity on objects, UT is equal to T on objects
and UT ◦ FT = T. There is another canonical decomposition
where the category of computations is given by algebras of
the monad, i.e., objects A with an arrow T A→ A compatible
with the monadic operations. The category of algebras CT,
called the Eilenberg-Moore category, is part of the adjunction

C

FT

==> CT

UT

}}

where FT is equal to T on objects, UT is equal to the identity
on objects and UT ◦ FT = T. This notion of computations
has not given rise to a monadic interpretation in functional
programming languages because the existence of the algebraic
structure appears as a side condition difficult to encode in
the absence of dependent types. To the opposite, the Kleisli
category was more suited because it corresponds to the sub-
category of free algebras of CT, and thus the algebraic nature
of computational types can be canonically encoded in the
interpretation of the arrow.

B. Call-by-name decomposition in CBPV.

The first observation, that was already made in [4], is that
the traditional monadic interpretation is call-by-value whereas
type theories such as CIC are fundamentally call-by-name.
The latter fact comes from the independence on the order of
evaluation hardcoded in the conversion rule. We advocate that
CBPV allows to clarify the situation by decribing both call-
by-value and call-by-name as two distinct decompositions,
leading to a more atomic presentation. CBPV’s types (and
terms) are divided into two classes: pure values and effectful
computations. It is possible to go from one to the other using
the two type constructors U and F that mimic the two parts
of the adjunction decomposing a computational monad (see
Figure 1). Call-by-name and call-by-value strategies can then
be decomposed into CBPV, inducing in turn two monadic
translations for the simply-typed λ-calculus.

The by-value decomposition [−]
v is defined on arrows as

[A→ B]
v

:= U ([A]
v → F [B]

v
)

whereas the by-name decomposition [−]
n is defined as

[A→ B]
n

:= U [A]
n → [B]

n.

Kleisli adjunction and forcing. When U and F are instanti-
ated by the Kleisli adjunction for the reader monad, we recover
the forcing translation. It has already been noticed in [4] that
the by-value decomposition corresponded to the usual presheaf
construction, while the by-name decomposition was the one
preserving the conversion rule of type theory.

Eilenberg-Moore adjunction and monadic translations. We
now observe that dually, when U and F are instantiated by the
Eilenberg-Moore adjunction, we recover, in the call-by-value
decomposition, the usual monadic interpretation for which

value types A,B ::= U X | α
computation types X,Y ::= A→ X | F A

Fig. 1. Call-by-push-value (types only)

A → B is interpreted by A → T B. Quite surprisingly,
we recover the definition of an arrow in the Kleisli category
whereas we are using the Eilenberg-Moore adjunction. This
is simply because the by-value decomposition forces one to
consider only the free algebras of the monad, whose category
is equivalent to the Kleisli category.

C. By-name Eilenberg-Moore translation for CIC.

The defect of the by-value decomposition comes from the
fact that, as CIC is call-by-name, the correctness of the
translation requires too many definitional equalities to hold.
We advocate in this paper that this is solved by considering
by-name decomposition of the Eilenberg-Moore adjunction.
In that case, as U is the identity, the dependent product is
translated transparently. Types are translated as plain algebras
(i.e., without coherence requirement), which can be easily
expressed by the dependent sum

��i = ΣA : �i. T A→ A. (1)

But in CIC, universes satisfy a kind of self-enrichment ex-
pressed as �i : �i+1. Thus, to get a correct interpretation of
universes, the monad needs to satisfy the additional require-
ment that the type of algebras needs to be itself an algebra
of the monad, that is morally ��i : ��i+1. A monad satisfying
this property will be called a self-algebraic monad. It is at the
heart of the definition of the weaning translation given in the
following section.

III. WEANING TRANSLATION OF CCω

This section describes the weaning translation for the neg-
ative fragment of CIC, namely CCω plus Σ-types, whose
typing and computation rules are given in Figure 2. It is based
on the notion of self-algebraic proto-monad.

Definition 1. A self-algebraic proto-monad is given by the
following family of terms:
• T : �i → �i

• ret : ΠA : �i. A→ T A
• bnd : Π(A : �i) (B : �j). T A→ (A→ T B)→ T B
• El : T ��i → ��i

• hbnd : Π(A : �i) (B : T ��j).
T A→ (A→ (El B).π1)→ (El B).π1

where the universe indices i, j are implicitly universally quan-
tified and ��i is defined in (1), furthermore subject to the
following definitional equation:

El (ret ��i M) ≡ M .

We call this structure a proto-monad because it does not
have to satisfy the monadic laws. Only one rule for the
interaction between El and ret is needed, but at the same
time it is crucial that it holds definitionally rather than just

Negative fragment:

A,B,M,N ::= �i | x |M N | λx : A.M | Πx : A.B

` Γ i < j

Γ ` �i : �j

Γ ` A : �i Γ, x : A ` B : �j

Γ ` Πx : A.B : �max(i,j)

Γ, x : A `M : B Γ ` Πx : A.B : �i

Γ ` λx : A.M : Πx : A.B

Γ `M : Πx : A.B Γ ` N : A

Γ `M N : B{x := N}
Γ `M : B Γ ` A : �i

Γ, x : A `M : B

` ·
Γ ` A : �i

` Γ, x : A

Γ ` A : �i

Γ, x : A ` x : A

Γ `M : B Γ ` A : �i Γ ` A ≡ B
Γ `M : A

(λx : A.M) N ≡M{x := N} (congruence rules ommitted)

Σ-types:

A,B,M,N ::= . . . | Σx : A.B |M.π1 |M.π2 | (M,N)

Γ ` A : �i Γ, x : A ` B : �j

Γ ` Σx : A.B : �max(i,j)

Γ `M : Σx : A.B

Γ `M.π1 : A

Γ `M : Σx : A.B

Γ `M.π2 : B{x := M.π1}

Γ `M : A Γ ` N : B{x := M} Γ ` Σx : A.B : �i

Γ ` (M,N) : Σx : A.B

(M,N).π1 ≡M (M,N).π2 ≡ N

Fig. 2. Typing and computation rules of CCω and Σ-types

propositionally. Furthermore, the self-algebraic quality is given
by the El primitive, which intuitively endows �i with a struc-
ture of T-algebra, even though it is not a formal requirement.
Actually, we could make the connection with category theory
more precise by asking for propositional equality for the rest
of the laws. But propositional equalities cannot be of any use
in the syntactical translation because using them would create
higher coherence issues, and since the inception of Homotopy
Type Theory [7], it is well-known that this turns out to be a
subtle matter.
Remark 1. It looks like it is possible to use the fact that
(El B).π1 is always equipped with a weak algebra structure
given by (El B).π2 to canonically derive the heterogeneous
binding operation hbnd out of bnd as

hbnd := λABM F.
(El B).π2 (bnd _ _ M (λx : A. ret _ (F x)))

but this does not work to interpret inductive datatypes. In
general, the resulting term would not satisfy the crucial
definitional equation of Definition 3.
Remark 2. For a given monad T, there can be several algebra
structures on �i, and thus distinct implementations for El as
discussed in Section V.

In what follows, we will be using the typical ambiguity of
type theory, and we will not explicit the universe indices of the
various universe-polymorphic terms. It would be possible to
do so at the cost of annotating the type-formers of the source

[�i] := ret ��i+1 ((T ��i), µ�i
)

[x] := x

[λx : A.M] := λx : [[A]]. [M]

[M N] := [M] [N]

[Πx : A.B] := ret �� ((Πx : [[A]]. [[B]]), µΠAB)

[[A]] := (El [A]).π1

µ�i
:= λA : T (T ��i).

bnd (T ��i) ��i A (λX : T ��i. X)

µΠAB := λ(f̂ : T (Πx : [[A]]. [[B]])) (x : [[A]]).
hbnd (Πx : [[A]]. [[B]]) [B]

f̂ (λf : Πx : [[A]]. [[B]]. f x)

[[·]] := ·

[[Γ, x : A]] := [[Γ]], x : [[A]]

Fig. 3. Weaning Translation

theory, but we consider that the additional burden would not
bring more insight into the translation.

Definition 2 (Weaning). Assuming a self-algebraic proto-
monad, we define the weaning translation from CCω to
CCω + Σ by induction over the term syntax in Figure 3.

As explain in Section II, the translation is essentially trans-

parent on the functional fragment. Only types are heavily mod-
ified. Intuitively, this corresponds to a universe-aware version
of the Eilenberg-Moore construction, where all types carry a
weak T-algebra structure which does not satisfy any equation.
Luckily, on all closed types, the weak algebra structure will
definitionally evaluate to a proper algebra.

We now turn to the proof that this translation gives rise
to a syntactical model of CCω . First, it naturally preserves
definitional equalities.

Proposition 1 (Computational soundness). If M ≡ N then
[M] ≡ [N].

Proof. Congruence rules are transparent owing to the fact the
translation is defined by induction on syntax, and the β-rule
is transparent as well because any β-redex is translated into
another β-redex.

Remark 3. If the target theory furthermore validates the η-
rule for Π-types, it it obvious that the source theory also does,
for λ-abstractions and applications are transparently translated.
This is another free consequence of the fact that the translation
stems from a call-by-push-value decomposition.

Proposition 2 (Type unfolding). The following definitional
equations hold:
• [[�i]] ≡ T ��i

• [[Πx : A.B]] ≡ Πx : [[A]]. [[B]]

Proof. By application of the reduction rule on El.

Proposition 3 (Typing soundness). If Γ ` M : A then it
follows that [[Γ]] ` [M] : [[A]].

Proof. The variable, λ-abstraction and application cases are
direct, thanks to the application of the conversion rule on Π-
types from Proposition 2. Conversion is handled transparently
thanks to Proposition 1. The only non-trivial cases are the
rules introducing types. All type formers are translated into a
term of the form ret �� (A,µA), so by Proposition 2 it is
sufficient to check that (A,µA) : �� ≡ ΣA : �. T A→ A.
• For the rule �i : �i+1, we must therefore show that

(T ��i, µ�i
) : ��i+1. We have indeed T ��i : �i+1

because ��i : �i+1. It is also obvious that µ�i
:

T (T ��i)→ T ��i because this corresponds to the free
algebra structure.

• Likewise, for the rule Πx : A.B : �max(i,j), we have
Πx : [[A]]. [[B]] : �max(i,j) by applying the induction
hypothesis. It remains to show that µΠAB has the ex-
pected type, which is a matter of straightforward symbol
pushing.

Thus, we get a model of CCω by a translation into CIC.

Theorem 1. Weaning provides a syntactic model of CCω .

IV. WEANING TRANSLATION OF BTT

This section extends the weaning translation to inductive
types, and in particular to dependent elimination. Because the
weaning translation adds effects to the theory, full dependent

elimination is not valid anymore. This is a typical issue arising
in presence of effects as it has been oberved independently
by Barthe and Uustalu [1] and by Herbelin [2]; and which
reappeared in our recent work on forcing.

In this section, we present a restriction of dependent elimi-
nation that allows for the definition of the weaning translation
on inductive types. We call the type theory resulting from this
restriction Baclofen Type Theory (BTT), because it alleviates
addiction to dependence. It is the source calculus of both the
weaning and the forcing translation2 and, as such, is a good
candidate to model effectful type theories.

A. Blaclofen Type Theory

On the negative fragment, BTT coincides with CCω . The
only difference between BTT and CIC appears on the elimina-
tors of inductive types. While CIC has one notion of pattern-
matching that implements both non-dependent and dependent
elimination, BTT has two. The first one is non-dependent and
is unconditionally valid, while the second one is dependent
and restricted through the use of storage operators.

We recall here the definition of storage operators [8], a
notion arising from classical realizability. Intuitively, a storage
operator on type A is a term θA : A→ (A→ R)→ R
allowing to enforce a call-by-value semantics on terms of
type A in an otherwise call-by-name language by means of
continuation-passing style. When A is an inductive datatype,
there is a canonical storage operator on A only defined in
terms of non-dependent elimination.

In order to keep the presentation simple, we will not
be using the usual fixpoint-based presentation of CIC as a
source calculus, but will rather define eliminators. Also, we
will only present BTT on three prototypical inductive types:
booleans, lists and propositional equality. Those inductive
types have been chosen because they feature all the ingredients
appearing in generic inductive types: multiple constructors,
parameters, indices and recursion. They are defined—in a Coq-
like syntax—as:
Inductive bool : � :=
| true : bool
| false : bool

Inductive list (A : �) : � :=
| nil : list A
| cons : A → list A → list A

Inductive eq (A : �) (x : A) : A → � := refl : eq A x x

In BTT, the non-dependent eliminators are unrestricted and
are the same as in CIC. They are given by the following terms,
with the usual ι-rules:

bool_case : ΠP. P → P → bool→ P

list_case : ΠAP.P → (A→ list A→ P → P)→
list A→ P

eq_case : ΠA (x : A) (P : A→ �). P x→
eq A x y → P y

Storage operators can be defined using only those non-
dependent elimination. The storage operators for our proto-
typical inductive examples are defined in Figure 4. In BTT,

2In [4], this restricted version of CIC was referred to as CIC−.

θbool : bool→ (bool→ �)→ �
:= λb k. bool_case ((bool→ �)→ �)

(λk. k true) (λk. k false) b k

θlist : ΠA. list A→ (list A→ �)→ �
:= λA l k. list_case A ((list A→ �)→ �)

(λk. k nil)
(λx _ r k. r (λl. k (cons A x l))) l k

θeq : ΠA (x y : A). eq A x y →
(Πy : A. eq A x y → �)→ �

:= λAxy e k. eq_case A x
(λy : A. (eq A x y → �)→ �)

(λk. k x (refl A x)) y e

Fig. 4. Storage operators for booleans, lists and equality.

storage operators are used to constraint the evaluation of the
predicate on which dependent elimination is performed. On
our prototypical inductive examples, dependent eliminators are
given by the terms (together with the usual ι-rules):

bool_rect : ΠP : bool→ �. P true→ P false→
Πb : bool. θbool b P

list_rect : ΠA (P : list A→ �). P (nil A)→
(Πx l. θlist A l P → θlist A (cons A x l) P)→

Πl : list A. θlist A l P

eq_rect : ΠA (x : A) (P : Πy : A. eq A x y → �).
P x (refl A x)→ Πy e. θeq A x y e P

Note that the usual dependent elimination of CIC can be
decomposed into this restricted elimination followed by an η-
rule for inductive types which can be written: θA a P = P
for all inductive types A. While this η-rule is actually proposi-
tionally valid in CIC, it is not preserved in presence of effects.

We highlight that BTT is the source theory of both the
call-by-name forcing translation and, as we will see, the
weaning translation, which itself encompasses a large class
of effects. Furthermore, it also prevents the paradox arising
from careless mixing of CIC with computational classical
logic of Herbelin [2]. Thence we believe that we have enough
phenomenological evidence to claim that BTT is the proper
way to mix dependent type theory with computational effects.

Conjecture 1. BTT models effectful type theories.

Obviously, this claim is somewhat ill-defined. As of today,
it is not even clear what an effectful type theory is. As for the
Church-Turing thesis, it should rather be taken as a definition
of what an effectful type theory is.

B. Dependent Monads

In order to interpret inductive types of BTT, we need
to define a stronger notion of proto-monad, which is also
equipped with structure allowing to depend on free algebras.

Definition 3. We say that a self-algebraic proto-monad T has
dependent elimination whenever the following equation holds

hbnd A B (ret A M) F ≡ F M

and furthermore there exists a universe-polymorphic depen-
dent binding operation
• dbnd :

Π(A : �i) (R : [[�k]]) (B : A→ [[R]]→ T ��j).
Π(x̂ : T A) (r : [[R]]). (Πx : A. [[B x r]])→

(El (hbnd A [R→ �j] x̂ B r)).π1

subject to the following definitional equation:

dbnd A R B (ret A M) N F ≡ F M N .

For readability purposes, we use the translation macros [·]
and [[·]] slightly abusively above, as they do not apply to the
target theory, but they can be expanded nevertheless in the
same syntactical way, e.g., [[B x r]] := (El (B x r)).π1.
Remark 4. Note that the equation on dbnd is only well-typed
whenever the equation on hbnd holds definitionally.

Altough the type of dbnd is intimidating, this is just an
artefact due to dependent typing. As witnessed by its reduction
rule, this is simply a variant of the hbnd term where B is
allowed to depend on the x : A argument, and they share
the same computational content. It has additional arguments
R and r for technical reasons arising from commutative cuts
that are needed to define dependent recursors.

In what follows, we will assume that T is a self-algebraic
proto-monad with dependent elimination.

C. Inductive Types without Dependent Elimination

In the next sections, we assume that our target theory
implements at least CIC [9], in particular fixpoints with a
guard condition.

The translation of inductive datatypes is rather straightfor-
ward from a programming point of view. The language we are
working in is call-by-name, so that all non-recursive datatypes
are interpreted as a free algebra of T. For recursive datatypes,
recursive calls are turned into the free algebra itself, which
raises an issue in CIC. Namely, datatype constructors must
satisfy the positivity criterion. In order for our translation to
go through, we assume that T is syntactically strictly positive
in its argument, which will be the case for all examples from
Section V. We define formally the inductive type translation
below.

Definition 4. Assume an inductive type I with parameters
(p1 : P1) . . . (pn : Pn) and indices (x1 : X1) . . . (xm : Xm),
with constructors c1 . . . ck. We define a new inductive I•
with parameters (p1 : [[P1]]) . . . (pn : [[Pn]]) and indices (x1 :
[[X1]]) . . . (xm : [[Xm]]), with constructors c•1 . . . c•k defined
as follows. Assume a constructor c of I of type

Π(p1 : P1) . . . (pn : Pn) (a1 : A1) . . . (al : Al).
I p1 . . . pn M1 . . . Mm

with argument types ~A, then c• has type

Π(p1 : [[P1]]) . . . (pn : [[Pn]]) (a1 : [[A1]]) . . . (al : [[Al]]).
I• p1 . . . pn [M1] . . . [Mm]

where we pose locally

[[I]] := λp1 . . . pn x1 . . . xm. T (I• p1 . . . pn x1 . . . xm).

Inductive bool• : � :=
| true• : bool•

| false• : bool•

Inductive list• (A : T ��) : � :=
| nil• : list• A
| cons• : [[A]]→ T (list• A)→ list• A

Inductive eq• (A : T ��) (x : [[A]]) :
[[A]]→ � :=

| refl• : eq• A x x

Fig. 5. Examples of inductive types translation

Positivity of c ensures us that only [[I]] will be needed rather
than the more general [I].

Figure 5 explicits the above translation on the prototypical
examples, in a Coq-like syntax. Observe in particular how the
the recursive argument of the cons• constructor is boxed under
a monadic type, revealing a typical call-by-name behaviour.

Definition 5 (Translation of inductive types). Given an induc-
tive type I and its constructors c as before, we extend the [·]
translation as follows:

[I] := λ(~p : [[~P]]) (~x : [[~X]]). ret �� ((T (I• ~p ~x)), µI)

[c] := λ(~p : [[~P]]) (~a : [[~A]]). ret (I• ~p [~M]) (c• ~p ~a)

µI := λι̂ : T (T (I• ~p ~x)). bnd _ _ ι̂ (λi. i)

Although the syntax is heavyweight, the translation is
essentially pointwise, except that it inserts a few free algebra
structures here and there.

Proposition 4. The translation of inductive types preserves
typing.

Proof. Direct check. In particular, we have the conversion
[[I ~p ~x]] ≡ T (I• [~p] [~x]).

We can now define non-dependent eliminators on inductive
datatypes by only relying on hbnd. Just as T needed to satisfy a
positivity condition, the existence of those eliminators depend
on hbnd being syntactically positive as well. We will assume
that this is the case in what follows, and once again the
examples of Section V will show that this is not a strong
restriction in practice.

Rather than giving the generic translation, which would not
be very readable, we provide the eliminators on the three
prototypical examples.

Definition 6. We extend the translation using these constants
for the corresponding eliminators from the source theory, i.e.,

[bool_case] := bool_case•

and similarly for list and eq; the eliminators are defined as:

bool_case• :

[[ΠP. P → P → bool→ P]]

:= λP pt pf b̂. hbnd _ _ b̂
(λb. match b with true• ⇒ pt | false• ⇒ pf)

list_case• :

[[ΠAP.P → (A→ list A→ P → P)→ list A→ P]]

:= λAP p0 pS l̂. hbnd _ _ l̂
(fix Φ l⇒ match l with

| nil• _⇒ p0

| cons• _ x l⇒ pS x l (hbnd _ _ l Φ))

eq_case• :

[[ΠA (x : A) (P : A→ �). P x→ eq A x y → P y]]

:= λAxP p ê. hbnd _ _ ê
(λe. match e with refl• _ _⇒ p)

Proposition 5. The eliminators satisfy the usual ι-rules defi-
nitionally.

Proof. Simple application of the conversion rule of hbnd.

As one can observe, the eliminator for list• uses CIC
fixpoints in a non-trivial way, and this is precisely from where
the requirement that hbnd is syntactically positive stems.

The empty type is an inductive type, so it is straightfor-
ward to give a criterion characterizing the consistency of the
translated theory.

Proposition 6 (Consistency). The source theory is consistent
iff T ⊥ is empty in the target theory.

Proof. Indeed, [[⊥]] ≡ T ⊥• ∼= T ⊥ where ∼= denotes type
isomorphism.

In Section VII, we will see how to use parametricity tech-
niques to overcome this condition by allowing the inconsistent
world to cohabitate with a consistent one even when T ⊥ is
inhabited.

D. Dependent Case Analysis

Finally, we show how dependent elimination restricted to
storage operators is definable in the source theory, thus leading
to a model of BTT.

Proposition 7. There exists dependent eliminators for bool,
list and eq with the restricted types of Section IV-A which
satisfy in addition the usual ι-rules.

Proof. The dependent eliminators are implemented essentially
like their non-dependent counterpart, except that hbnd is
turned into dbnd. The additional R and r arguments of dbnd
are instantiated respectively with the type of P and P from the
corresponding recursor. Validity of ι-rules is in turn ensured
by the conversion rule on dbnd.

Contrarily to the forcing translation, it is sometimes possible
to cheat and implement full dependent elimination.

Proposition 8. If there is a term z : ΠA : �. T A and one
can definitionally discriminate terms of the form ret A M ,
then full dependent elimination is implementable.

Proof. The eliminator is defined as the standard CIC elimina-
tor on terms which are applied constructors (i.e., of the form
ret _ (c ~M) for some constructor c) and otherwise uses z
to produce a dummy proof.

Obviously, by Proposition 6 the existence of z entails that
the theory resulting from weaning is logically inconsistent,
but it may still have some use for programming or proof
extraction. Practical examples will be given in the next section.

However, it is shown in Section VII that, using parametricity
techniques, it is possible to get effects with full dependent
elimination without the cost of inconsistency.

V. INSTANCES OF THE WEANING TRANSLATION

In this section, we describe a few representative instances of
our model. The diversity of the effects obtained shows that this
construction is quite generic. For the various T we give, the
monad structure is well-known, so that we will only describe
the data specific to this article. The corresponding code can be
found at https://github.com/CoqHott/coq-effects.

Our target theory is computational, thus it is possible to give
equational theories for the effectful operators we introduce
thereafter. Nonetheless, this section is more about the proof
of concept, and hence we will refrain from describing them.

A. Writer on a free monoid

We assume a fixed universe-polymorphic type Ω• and
we also assume that our target theory features a universe-
polymorphic type of lists.

Definition 7. Let T A := A× list Ω• together with

El := λA.A.π1

hbnd := λAB x̂ f. match x̂ with

| (x, nil _)⇒ f x
| (x, l)⇒ (El B).π2 ((f x), l)

dbnd := λABR x̂ r f. match x̂ with

| (x, nil _)⇒ f x r
| (x, l)⇒ (El B).π2 ((f x r), l)

Note that we are somehow cheating to implement this
instance, because we take advantage of the fact we can
definitionally observe whether the monoid element is the unit
to satisfy the conversion rule on hbnd.

Definition 8. We extend the source theory with Ω : �,
tell : Ω→ unit and listen : unit→ Ω as follows where
app is list concatenation.

[Ω] := ret �� ((list Ω•), µΩ)
µΩ := λω. app (ω.π1) (ω.π2)
[tell] := λω : list Ω•. ((), ω)
[listen] := λi : unit• × list Ω•. i.π2

It is possible more generally to observe the current writ-
ten value on universes and inductive datatypes, but we will
not describe the relevant combinators here. This translation
preserves consistency, but its logical implications are unclear.

B. Dynamic Exceptions

As for the writer, we assume a fixed universe-polymorphic
type E•, and in addition that the target theory has a sum type.

Definition 9. The exception monad is defined as T A :=
A+ E• together with

El := λA. match A with inlX ⇒ X | inr e⇒ f e
hbnd := λAB x̂ f. match x̂ with

| inl x⇒ f x
| inr e⇒ (El B).π2 (inr e)

dbnd := λABR x̂ r f. match x̂ with

| inl x⇒ f x r
| inr e⇒ (f e).π2 (inr e)

where f : E• → �� is arbitrary, e.g., f := λ_. (1, λ_. ()).

The fact that f is arbitrary reflects the choice we have
to make about types returning exceptions, because it is not
specified at all. It fixes the meaning of Γ ` M : fail N �,
where fail is defined below.

Definition 10. We extend the source theory with E : � and
fail : E→ ΠA : �. A defined as follows.

[E] := ret �� (E•, µE)
µE := λe. match e with inl e⇒ e | inr e⇒ e
[fail] := λeA. (El A).π2 (inr e)

The reader should be aware that the exceptions arising
from this translation are call-by-name, so that they do not
behave like their usual call-by-value counterpart. In particular,
we have [fail M (Πx : A.B)] ≡ [λx : A. fail M B]. This
means that exceptions cannot be caught on Π-types. We can
catch them on universes and inductive types though, because
they are translated as free algebras. For instance, there exists
in the source theory a term catchbool of type

ΠP : bool→ �. P true→ P false→
(Πe : E. P (fail e bool))→ Πb : bool. P b

with the expected reduction rules on all three cases.
Because of Proposition 6, the resulting theory is inconsistent

as soon as E• is inhabited. Yet, the translation can be used for
logical purposes. The careful reader may indeed have realized
that the weaning translation on exceptions is no more than
Friedman’s trick [10] on steroids. Thus we can use it for
program extraction on the Σ0

1 classical fragment.

Proposition 9. We have [[¬¬A]] ∼= ([[A]]→ E•)→ E•.

Proposition 10. If I is a first-order type, then there is a term
evalI : [[I]]→ I + E•.

By Proposition 8, full dependent elimination is interpreted,
so that by putting all these properties together we recover this
interesting extraction result by taking E• := I.

Theorem 2. If I is a first-order type and there is a proof of
¬¬I in CIC, then there is a proof of I in CIC.

C. Non-determinism

We sketch a model of BTT with non-determinism here.

Definition 11. The non-empty list monad is defined as T A :=
A× list A together with

El (X, (nil _)) := X
El (X, [X1; . . . ;Xn]) := (X.π1 ×X1.π1. . . ×Xn.π1, µ)

https://github.com/CoqHott/coq-effects

where µ is canonically defined from the algebra structure on
the Xi. Likewise, it is possible to define hbnd and dbnd

similarly to the usual bnd combinator.

Note that just as in the case of exceptions, El could be
defined in many other ways, because effectful types are not
specified. For instance, it is also valid to take El A := A.π1.

In any case, this monad allows to write a merging operator
that features non-determinism.

Definition 12. We extend the source theory with an operator
amb : ΠA : �. A→ A→ A defined as follows.

[amb] := λAxy. (El A).π2 (x, (cons _ y (nil _)))

Despite its type, amb is neither the first nor the second
projection. On closed types, it is possible to give an equational
theory to amb (e.g., it is associative). Once again, the model
preserves consistency, but its added logical expressivity is not
known.

D. Non-termination

It turns out that the delay monad is indeed a self-algebraic
monad, so that it is possible to build a type theory with built-in
non-termination and arbitrary fixpoints.

Definition 13. The delay monad is defined as

CoInductive T (A : �) : � :=
| here : A→ T A
| next : T A→ T A

with for instance El (here _ X) := X and (unit, λ_. ())
otherwise. It has dependent elimination in a direct way.

The definition of El above is very naive, and implies
that all impure types evaluate to the singleton type. This
is degenerated, and it is possible to do better by using a
heterogeneous delay monad instead.

Following Capretta’s work [11], we can define a fixpoint
operator through the weaning translation.

Proposition 11. Assuming B is a free algebra, there exists
a term YB : [[ΠA. ((A→ B)→ A→ B)→ A→ B]] that
satisfies a fixpoint equation (up to bisimilarity).

Proof. The free algebra condition on B means indeed that
we have [[B]] := T C for some C, so that we must build
YB : ΠA. (([[A]]→ T C)→ [[A]]→ T C)→ [[A]]→ T C. It is
then defined by coinduction in the same way as in Capretta’s
paper.

Note that any type can be turned into a free algebra by
using the box type from the next section so that one can
define a generic fixpoint. The resulting theory is inconsistent
by virtue of Proposition 6, but this does not prevent its use
as a dependently-typed programming language with decidable
typing and general recursion.

VI. LINEARITY AS A GUARD CONDITION

The restriction on dependent elimination of BTT can be
extended on a more semantical ground by using linearity, a no-
tion that has been first described by Munch-Maccagnoni [12]
and rephrased recently in the context of CBPV by Levy [13].
Linearity3 is a property of call-by-name functions which
intuitively represents the fact that a function is semantically
call-by-value. We recall Levy’s definition below in a type-
theoretical setting, which first relies on the existence of a unary
sum type.

Definition 14. We define the inductive type box as

Inductive box (A : �) : � := Box : A→ box A

together with its non-dependent eliminator

box_case : Π(A : �) (P : �). (A→ P)→ box A→ P

which both automatically admit a weaning translation.

Naturally, in CIC, box A is isomorphic to A, thanks to
dependent elimination. This is not the case anymore in BTT,
precisely because full dependent elimination is not available.
Instead, the fact that this type is an inductive type provides
a way to locally perform computation in a call-by-value
fashion. This is made clear through the weaning translation,
as witnessed by the following lemma.

Proposition 12. [[box A]] ∼= T [[A]] holds in CIC.

We can now define the proper notion of linearity in the
weaning translation.

Definition 15 (Linearity). We say that a term M : [[A→ B]]
is linear whenever there is a proof of

Πx̂ : [[box A]]. [λf. f (box_case A A (λx : A. x) x̂)] M =
[λf. box_case A B f x̂] M

in the target theory.

This definition uses equality of the target theory, so that
we can define a predicate linear : ΠAB. [[A→ B]]→ �
in the target theory. Although it is defined here in terms
of the weaning translation, it can be generalized to any
syntactic translation of type theory in a straightforward way. In
particular, in a pure language, the notion is trivial. For instance,
in CIC, by taking [·] to be the identity, all functions are linear
because box A is isomorphic to A.

This is not true in presence of non-trivial effects. Let for
instance be ϕ : unit→ unit := λ_. (), and assume that
the language allows non-termination. Thus there is a non-
converging term loop : box unit. Then the linearity equation
is not valid for M := ϕ and x̂ := loop, because the left-hand
side converges, while the right-hand side diverges.

At first sight, it seems that linearity is a property that makes
sense in the context of semantics of programming languages,
but which has little to do with logic. Surprisingly, it turns out to

3This notion of linearity is mostly unrelated to linearity in the sense of
linear use of variables.

be a valuable criterion to assess that a predicate is insensitive
to storing.

Proposition 13 (Storing invariance). Let us assume that T

satisfies the monad laws propositionally, that hbnd is exten-
sionally defined as in Remark 1, and furthemore that the
target theory satisfies functional extensionality. Let I be a
non-recursive inductive type.

If a predicate P : [[I → �]] is linear, then

Πi : [[I]]. [θI] i P = P i.

Proof. As θI is defined as a single pattern-matching, it unfolds
to an application of hbnd to a case analysis. But [�] is a free
algebra, and by the canonicity of hbnd, this can be rewritten
to an application of bnd to a case analysis. Then, using the
isomorphism of Proposition 12, the equation of linearity is
transported on T I•. We conclude by a rewriting of monadic
laws and dependent elimination on I•.

The above lemma uses type theory in a non-trivial way,
because to be formulated it requires that predicates are actual
terms from the theory, and thus relies on the existence of
universes. We suspect this is the reason why the few attempts
at an effectful dependent type theory have been strongly
restricted up to now.

Confortingly, this property is not limited to the weaning
translation as it holds also for call-by-name forcing under the
same assumption. This is quite expected, as the definitions
of BTT and linearity do not dependent on the underlying
effect. Furthermore, it is also obviously true for the identity
translation of CIC.

Remark 5. Storing invariance does not hold for recursive
inductive types. This is due to the fact that linearity on f only
captures the fact that f commutes with one pattern-matching,
whereas it would need to commute with arbitrary fixpoints to
extend to recursive types.

Notwithstanding the above limitation, storing invariance
allows to provide a semantical restriction on non-recursive
dependent elimination in BTT rather than having to go through
storage operators. Namely, it is semantically correct to provide
a dependent pattern-matching in BTT on, say, bool of the
following form.

. . . (usual rules) . . . C linear in z

Γ ` match M with true ⇒ N1 | false ⇒ N2 : C{z := M}

The key difference with standard CIC pattern-matching is
the side condition of linearity on C.

Obviously, it is not palatable to have to write proofs of
linearity, and one would like to have the system decide
automatically whether a predicate is linear. Just as the fixpoint
guard condition of CIC is a syntactic underapproximation of
a semantical notion of positivity, it is possible to provide a
syntactic approximation for linearity. A few syntactical closure
properties are described in Levy’s paper for instance. Most
notably, storage operators would syntactically turn an arbitrary
predicate into a linear one, because they start with a linear

pattern-matching on the variable being eliminated. It means
that there would not be any need to hardwire them in BTT.

Apart from the fact it is not clear how to extend linearity
to recursive inductive types, this would result in a pattern-
matching-based theory closer to CIC, and easier to work with
in a proof assistant. We will refrain from exploring this further
in this paper and leave it for future work.

VII. PARAMETRIC WEANING TRANSLATION FOR CIC

This section is dedicated to the description of a technique
based on parametricity to recover a syntactical model of full
CIC out of the weaning translation, while allowing at the same
time this pure world to cohabitate with effectful programs.

Parametricity is a well-known proof technique introduced by
Reynolds [14] that is used for a vast range of purposes, e.g.,
the automatic derivation of properties of programs according to
their type described by Wadler [15]. A few years ago, Bernardy
and others showed that parametricity could be written as a
syntactical translation over type theory [16]. In a nutshell, their
translation associates to a term M : A a term [M]ε : [A]ε M
where [A]ε translates to the parametricity predicate over A.
The elegance of the translation stems from the fact that just
as for CCω , it does not make any formal distinction between
terms and types and that the parametricity predicate [A]ε and
parametricity theorem [M]ε are actually derived by the same
syntactical induction.

Contrarily to their presentation, we will not use parametric-
ity to state properties on terms from an underlying theory
but rather use it to carve out non-parametric terms from the
underlying theory, resulting in a syntactical model of CIC
instead of BTT.

Moreover, the translation we give is a variant of parametric-
ity that we will call internal, by opposition to Bernardy’s
presentation which we will call external. The difference lays
in the handling of free variables. In Bernardy’s original pre-
sentation, terms from the source theory cannot depend on the
fact that variables are assumed parametric. This is due to terms
being translated in two sequents, where the first translation is
essentially identity for unary parametricity, and the second one
explicits parametricity of the first term.

By contrast, we will call our translation internal because it
only produces one sequent, and furthermore translated terms
rely essentially on the fact that parametricity assumptions on
variables are available. In particular, as a syntactical enhance-
ment, variables from the context will be translated as Σ-types
rather than as a pair of variables.

A. Parametricity Restriction

The intuitive idea of this model is simple. As the weaning
translation fails to interpret dependent elimination because
there are non-canonical inductive terms in the model, let us
simply claim that we will only be interested in inductive terms
which are well-behaved, i.e., parametric. Obviously this needs
to scale to the whole translation, so that it needs to be a
little involved. We first explicit the translation on the negative

[�i] := ret ��i+1 ((T ��i), µ�i
)

[x] := x.π1

[λx : A.M] := λx : [[A]]
!
. [M]

[M N] := [M] [N]
!

[Πx : A.B] := ret �� ((Πx : [[A]]
!
. [[B]]), µΠAB)

[�i]ε := λA : T ��i. (El A).π1 → �i

[x]ε := x.π2

[λx : A.M]ε := λx : [[A]]
!
. [M]ε

[M N]ε := [M]ε [N]
!

[Πx : A.B]ε := λf : Πx : [[A]]
!
. [[B]].

Πx : [[A]]
!
. [B]ε (f x)

µ�i
:= λA : T (T ��i).

bnd (T ��i) ��i A (λX : T ��i. X)

µΠAB := λ(f̂ : T (Πx : [[A]]
!
. [[B]])) (x : [[A]]

!
).

hbnd (Πx : [[A]]
!
. [[B]]) [B]

f̂ (λf : Πx : [[A]]
!
. [[B]]. f x)

[[A]] := (El [A]).π1

[M]
!

:= ([M], [M]ε)

[[A]]
!

:= Σx : [[A]]. [A]ε x

[[·]] := ·

[[Γ, x : A]] := [[Γ]], x : [[A]]
!

Fig. 6. Parametric Weaning Translation

fragment before showing how this allows to recover full-blown
dependent elimination.

Definition 16 (Parametric Weaning). Assuming T is a self-
algebraic proto-monad, we define parametric weaning over the
syntax of CCω in Figure 6.

On the [·] fragment, the translation is essentially the same as
the non-parametric weaning, except that variables and function
arguments are packed with their parametricity proof. This is
typical of the thunking appearing in call-by-name translations,
and is reminiscent of the forcing translation [4], which is why
we use the same [·]! notation.

In what follows, for the sake of simplicity we will assume
that the target theory validates definitional surjective pairing.
It is technically not necessary, at a cost of a slightly less
understandable translation, where [·]! is primitive and [·] and
[·]ε are derived from it.

Proposition 14 (Substitution lemma). We have both
[M{x := N}] ≡ [M]{x := [N]

!} and [M{x := N}]ε ≡
[M]ε{x := [N]

!}.

Proof. By induction over M .

Corollary 1 (Computational soundness). If M ≡ N then

[M] ≡ [N] and [M]ε ≡ [N]ε.

Proposition 15 (Typing soundness). If Γ ` M : A then we
have [[Γ]]

! ` [M] : [[A]] and [[Γ]]
! ` [M]ε : [A]ε [M]. As a

consequence, [[Γ]]
! ` [M]

!
: [[A]]

!.

Proof. By induction over the typing derivation.

Remark 6. To extend the theory with some constant M : A,
it is thus sufficient to provide a pair of terms [M] : [[A]] and
[M]ε : [A]ε [M] as all other definitions are derived.

As before, the previous lemmas state no more that the [·]!
translation gives rise to a syntactic model of CCω . It is slightly
more convoluted that the bare weaning translation, as it adds
a predicate to types and ensure that all terms respect the
predicate of their type.

Proposition 16. We have the following unfoldings.
• [[�]]

! ≡ ΣA : T ��. (El A).π1 → �
• [[Πx : A.B]]

! ≡ Σf : Πx : [[A]]
!
. [[B]].

Πx : [[A]]
!
. [B]ε (f x)

∼= Πx : [[A]]
!
. [[B]]

!

We now show how it actually extends to inductive types.
We will focus on the simple example of booleans, because it
already exhibits the trick, although the same technique scales
to arbitrary inductive types.

Definition 17 (Boolean parametricity). We define the follow-
ing inductive predicate over T bool•.

Inductive bool•ε : T bool• → � :=
| true•ε : bool•ε (ret bool• true•)
| false•ε : bool•ε (ret bool• false•)

Definition 18. We extend the parametric weaning translation
as follows.

[bool] := ret �� ((T bool•), µbool)

[true] := ret bool• true•

[false] := ret bool• false•

[bool]ε := bool•ε

[true]ε := true•ε

[false]ε := false•ε

µbool := λb̂ : T (T bool•). bnd _ _ b̂ (λb. b)

It is not hard to check that typing soundness still holds with
this extension.

Proposition 17. The above translation preserves typing.

Luckily, through the translation, boxed inhabitants have
more structure than just pertaining to the free algebra over
bool•.

Proposition 18. We have [[bool]]
! ≡ Σb : T bool•. bool•ε b.

This proposition amounts to say that [[bool]]
! is isomorphic

to bool simply thanks to the second component. This allows
to write full dependent elimination over booleans.

Proposition 19. There exists a fully dependent eliminator over
bool in the parametric weaning translation, that furthermore
preserves usual ι-rules.

Proof. It is implemented by dependent pattern-matching over
the second component of b : [[bool]]

!. Reduction rules are valid
owing to the fact they apply to constructors.

It is essential for the eliminator to have access to the
parametricity proof of its argument. This is where the internal
nature of our variant stands out. With external parametricity,
the eliminator would only have access to a non-standard
boolean b : T bool• and would not be able to do anything
relevant with it without the storage operator restriction. Even
though the parametricity proof of the eliminator would access
it, it would already be too late.

This technique can be generalized effortlessly to any induc-
tive type in a way similar to Bernardy’s parametricity, leading
to the following observation.

Theorem 3. The parametric weaning translation is a syntactic
model of CIC. In addition, it preserves consistency.

Interestingly enough, the parametric part of the translation is
quite independent from the effectful translation. It can actually
be extended to other settings, such as call-by-name forcing.
Moreover, it highlights a blind spot of parametricity: types.

The parametricity restriction enforces functions to be re-
spectful, and inductive datatypes to be indeed inductively
generated. Yet, the only constraint we put on types is that
they wear a parametricity predicate on their elements. But the
weaning translation did generate new types as soon as T is not
the identity, as [[�]] ≡ T ��. Thus there are new anomalous
types modelled by the parametric weaning translation, so that
it is larger than the original theory. Clearly, it is impossible in
pure CIC to add a constraint on the shape of a type precisely
because of parametricity. But here, we have more structure on
types so that we could restrict them. For instance, we could
enforce elements of T �� to be of the form ret �� A for some
A to bar non-standard types and recover the original theory.

The usual parametricity translation simply does not put
any constraint. We believe that this explains the mechanism
hidden under the monotonicity condition of forcing, which
preserves inductive types while allowing to expand universes
as presheaves. Somehow, universes in type theory are under-
specified.

B. BTT as a Modality

It is obvious that giving a model of CIC alone is not
very exciting. The interesting bits come from the additional
expressive power bestowed by this translation. In this section,
we show that BTT can be injected into the parametric weaning
translation thanks to the effect modality.

Definition 19 (Effect modality). We define the effect modality
E : �i → �i in the source theory as follows.

[E] := λA : [[�]]
!
. A.π1

[E]ε := λ(A : [[�]]
!
) (x : (El (A.π1)).π1). unit

The proper way to understand the effect modality is that
given a type A with the parametricity predicate Aε, it builds
the same underlying type A but with the full predicate, so that
any term of type [[A]] is parametric for [E A]ε.

Example 1. For instance, we have

[[E bool]]
! ≡ Σb : T bool•. unit ∼= T bool•.

Proposition 20. The effect modality has a few properties in
the source theory that should be highlighted.
• It is definitionally idempotent, i.e., E (E A) ≡ E A.
• There exists a return operator ηE : ΠA.A→ E A.
• It is not functorial, as E (Πx : A.B) ∼= Πx : A.E B.

In particular, E is not a self-algebraic monad. Nonetheless,
it is possible to give an internal translation of BTT into the
parametric weaning of CIC.

Definition 20 (Effectful translation). The effectful translation
[·]E is defined as [·] in Figure 6 except that we replace
uniformly all translations by their E-indexed variant, where

[M]
!
E := ([M]E, ())

[[A]]E := (El [A]E).π1

[[A]]
!
E := Σx : [[A]]E. unit

Note in particular that [·]ε does not appear in [·]E.

Proposition 21. Assuming Γ `M : A in BTT, then we have
[[Γ]]

!
E ` [M]

!
E : [[A]]

!
E.

Proof. Essentially the same proof as in Proposition 3.

Definition 21 (Effectful quotation). For every term M from
BTT, we extend the source theory with a term dMe whose
translation is defined below.

[dMe] := [M]E [dMe]ε := ()

Definition 22. We define in the source theory the effectful
element E` : E �i → �i as follows.

[E`] := λA : [[E �]]
!
. A.π1

[E`]ε := λ(A : [[E �]]
!
) (x : (El (A.π1)).π1). unit

Proposition 22. We have E (E` A) ≡ E` A.

The following theorem is then an immediate consequence
of Proposition 21 obtained by unfolding the definitions.

Theorem 4. Assuming Γ ` M : A in BTT, then we have
[[E` dΓe]]! ` [dMe]! : [[E` dAe]]! in the target theory.

This shows that we can readily embed BTT into CIC as a
kind of DSL. Obviously, the d·e operator satisfies a few rules
that are not described here, but which follow from the defini-
tions, e.g., dΠx : A.Be ≡ ηE � (Πx : E` dAe. E` dBe). The
major difference of this translation w.r.t. the direct inclusion of
BTT into CIC as one would have obtained by Proposition 3
comes from the fact universes are translated transparently.
Hence, we can reason about the effectful fragment as if it
was part of the theory, and this can be used to mix effects
with proofs in a consistent way.

VIII. RELATED WORK

The introduction of dependent types in mainstream pro-
gramming languages is currently gaining traction, as witnessed
by the growing community of Idris [17] for instance. This
naturally raises the question of computational effects in a
dependent setting. However, the literature on the topic is rather
terse. To the best of our knowledge, apart from the work on
forcing in type theory [4], there are only two very recent and
overlapping lines of work that intersect with BTT, namely the
independent description of a dependent CBPV by Ahman et
al. [18] and Vákár [19].

Quite interestingly, the initial intuition given by Ahman et
al. for their system is very similar to the fundamental idea
of weaning that types must carry an algebra structure and
that dependency is distributed over it. But, in the content of
the paper, their presentation turns into a more ad-hoc system
where dependency-introducing structures are duplicated be-
tween terms and computations, resulting in a syntax cancelling
all the fundamental computational dualities of CBPV.

As for the systems described by Vákár, their limitations
are clear through the prism of BTT. Vákár describes two
systems, dCBPV− where dependence is restricted to values,
and dCBPV+, which is an extension of the former. dCBPV− is
compatible with BTT on the CBN fragment, but its limitation
lies in its lack of expressivity. There are no universes and no
dependent elimination on anything else than syntactical values,
so that it is not even clear how to introduce a non-trivial
conversion rule. dCBPV+ is therefore proposed to extend
dCBPV− with the so-called dependent Kleisli extension rule.
It turns out that this rule essentially postulates in the logic
that all predicates are linear, which is, as we have seen in
Section VI, false in presence of effects. As a consequence,
all models of dCBPV+ are either pure or logically unsound.
All the examples he gives of the implementation of the Kleisli
extension rule are actually an instance of Proposition 8.

On another line of work, the notion of (accessible) modal-
ities in Homotopy Type Theory [7] is quite close to self-
algebraic monads. Indeed, the purpose of modalities is to
reflect a subuniverse of the theory with extra logical properties,
in the same way as self-algebraic monads are used to define
new models of BTT with additional effects. However, such
modalities are by definition idempotent, whereas self-algebraic
monads, coming from functional programming, rarely are.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have defined the first monadic translation
of type theory, called weaning translation, that allows for
a large range of effects in dependent type theory—such as
exceptions, non-termination, non-determinism or writing oper-
ation. The weaning translation typically applies to a version of
CIC with a restricted version of dependent elimination, called
Baclofen Type Theory, which constitutes a good candidate
for the definition of an effectful type theory. Finally, we
have shown how to recover a translation of full CIC using
parametricity techniques. The translation is available as a Coq
plugin and all the examples have been formalized with it.

Our work opens a new line of research on the logical
expressivity induced by the use of traditional computation
monads in type theory. It also offers the possibility to program
with and reason on effects in the same framework, without
relying on additional axioms in the theory.

REFERENCES

[1] G. Barthe and T. Uustalu, “Cps translating inductive and coinductive
types,” in Proceedings of Partial Evaluation and Semantics-based Pro-
gram Manipulation. ACM, 2002, pp. 131–142.

[2] H. Herbelin, “On the degeneracy of sigma-types in presence of compu-
tational classical logic,” in Seventh International Conference, TLCA ’05,
Nara, Japan. April 2005, Proceedings, ser. Lecture Notes in Computer
Science, P. Urzyczyn, Ed., vol. 3461. Springer, 2005, pp. 209–220.

[3] S. Boulier, P.-M. Pédrot, and N. Tabareau, “The next 700 syntactical
models of type theory,” in Proceedings of Certified Programs and Proofs.
ACM, 2017, pp. 182–194.

[4] G. Jaber, G. Lewertowski, P.-M. Pédrot, M. Sozeau, and N. Tabareau,
“The definitional side of the forcing,” in Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New
York, NY, USA, July 5-8, 2016, 2016, pp. 367–376.

[5] P. B. Levy, “Call-by-push-value,” Ph.D. dissertation, Queen Mary, Uni-
versity of London, 2001.

[6] E. Moggi, “Notions of computation and monads,” Information and
Computation, vol. 93, no. 1, pp. 55–92, Jul. 1991.

[7] T. Univalent Foundations Program, Homotopy Type Theory: Univalent
Foundations of Mathematics, Institute for Advanced Study, 2013.

[8] J.-L. Krivine, “Classical logic, storage operators and second-order
lambda-calculus,” Ann. Pure Appl. Logic, vol. 68, no. 1, pp. 53–78,
1994.

[9] C. Paulin-Mohring, “Introduction to the Calculus of Inductive Con-
structions,” in All about Proofs, Proofs for All, ser. Studies in Logic
(Mathematical logic and foundations), B. W. Paleo and D. Delahaye,
Eds., Jan. 2015, vol. 55.

[10] H. Friedman, “Classically and intuitionistically provably recursive func-
tions,” in Higher Set Theory, ser. Lecture Notes in Mathematics, G. H.
Müller and D. S. Scott, Eds. Springer Berlin Heidelberg, 1978, vol.
669, pp. 21–27.

[11] V. Capretta, “General recursion via coinductive types,” Logical Methods
in Computer Science, vol. 1, no. 2, 2005.

[12] G. Munch-Maccagnoni, “Models of a Non-Associative Composition,”
in 17th International Conference on Foundations of Software Science
and Computation Structures, A. Muscholl, Ed., vol. 8412. Grenoble,
France: Springer, Apr. 2014, pp. 396–410.

[13] P. B. Levy, “Contextual isomorphisms,” in Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages. New
York, NY, USA: ACM, 2017, pp. 400–414.

[14] J. C. Reynolds, “Types, abstraction and parametric polymorphism,” in
IFIP Congress, 1983, pp. 513–523.

[15] P. Wadler, “Theorems for free!” in Functional Programming Languages
and Computer Architecture. ACM Press, 1989, pp. 347–359.

[16] J.-P. Bernardy and M. Lasson, “Realizability and Parametricity in Pure
Type Systems,” in Foundations of Software Science and Computational
Structures, vol. 6604, Saarbrücken, Germany, Mar. 2011, pp. 108–122.

[17] E. Brady, “Idris, a general-purpose dependently typed programming
language: Design and implementation,” Journal of Functional Program-
ming, vol. 23, no. 05, pp. 552–593, 2013.

[18] D. Ahman, N. Ghani, and G. D. Plotkin, “Dependent types and fibred
computational effects,” in 19th International Conference on Foundations
of Software Science and Computation Structures. Eindhoven, The
Netherlands: Springer Berlin Heidelberg, 2016, pp. 36–54.

[19] M. Vákár, “A framework for dependent types and effects,” 2015, draft.
[Online]. Available: https://arxiv.org/abs/1512.08009

https://arxiv.org/abs/1512.08009

	Introduction
	Genesis of the construction
	The two canonical decompositions of a monad.
	Call-by-name decomposition in CBPV.
	By-name Eilenberg-Moore translation for CIC.

	Weaning Translation of CC
	Weaning Translation of BTT
	Blaclofen Type Theory
	Dependent Monads
	Inductive Types without Dependent Elimination
	Dependent Case Analysis

	Instances of the Weaning Translation
	Writer on a free monoid
	Dynamic Exceptions
	Non-determinism
	Non-termination

	Linearity as a Guard Condition
	Parametric Weaning Translation for CIC
	Parametricity Restriction
	BTT as a Modality

	Related Work
	Conclusion and Future Work
	References

